Using gene map science to evaluate the genetic map and eliminate disease

Genetic News

Key discoveries in Drosophila have shaped our understanding of cellular "enhancers." With a special focus on the fly, this chapter surveys properties of these adaptable cis-regulatory elements, whose actions are critical for the complex spatial/temporal transcriptional regulation of gene expression in metazoa. The powerful combination of genetics, molecular biology, and genomics available in Drosophila has provided an arena in which the developmental role of enhancers can be explored. Enhancers are characterized by diverse low- or high-throughput assays, which are challenging to interpret, as not all of these methods of identifying enhancers produce concordant results. As a model metazoan, the fly offers important advantages to comprehensive analysis of the central functions that enhancers play in gene expression, and their critical role in mediating the production of phenotypes from genotype and environmental inputs. A major challenge moving forward will be obtaining a quantitative understanding of how these cis-regulatory elements operate in development and disease.

Populations structured into genetic groups may display group-specific linkage disequilibrium, mutations, and/or interactions between quantitative trait loci and the genetic background. These factors lead to heterogeneous marker effects affecting the efficiency of genomic prediction, especially for admixed individuals. Such individuals have a genome that is a mosaic of chromosome blocks from different origins, and may be of interest to combine favorable group-specific characteristics. We developed two genomic prediction models adapted to the prediction of admixed individuals in presence of heterogeneous marker effects: multigroup admixed genomic best linear unbiased prediction random individual (MAGBLUP-RI), modeling the ancestry of alleles; and multigroup admixed genomic best linear unbiased prediction random allele effect (MAGBLUP-RAE), modeling group-specific distributions of allele effects. MAGBLUP-RI can estimate the segregation variance generated by admixture while MAGBLUP-RAE can disentangle the variability that is due to main allele effects from the variability that is due to group-specific deviation allele effects. Both models were evaluated for their genomic prediction accuracy using a maize panel including lines from the Dent and Flint groups, along with admixed individuals. Based on simulated traits, both models proved their efficiency to improve genomic prediction accuracy compared to standard GBLUP models. For real traits, a clear gain was observed at low marker densities whereas it became limited at high marker densities. The interest of including admixed individuals in multigroup training sets was confirmed using simulated traits, but was variable using real traits. Both MAGBLUP models and admixed individuals are of interest whenever group-specific SNP allele effects exist.

Remarkably complex patterns of aneuploidy have been observed in the genomes of many eukaryotic cell types, ranging from brewing yeasts to tumor cells. Such aberrant karyotypes are generally thought to take shape progressively over many generations, but evidence also suggests that genomes may undergo faster modes of evolution. Here, we used diploid Saccharomyces cerevisiae cells to investigate the dynamics with which aneuploidies arise. We found that cells selected for the loss of a single chromosome often acquired additional unselected aneuploidies concomitantly. The degrees to which these genomes were altered fell along a spectrum, ranging from simple events affecting just a single chromosome, to systemic events involving many. The striking complexity of karyotypes arising from systemic events, combined with the high frequency at which we detected them, demonstrates that cells can rapidly achieve highly altered genomic configurations during temporally restricted episodes of genomic instability.

Neurospora crassa contains a minimal Polycomb repression system, which provides rich opportunities to explore Polycomb-mediated repression across eukaryotes and enables genetic studies that can be difficult in plant and animal systems. Polycomb Repressive Complex 2 is a multi-subunit complex that deposits mono-, di-, and trimethyl groups on lysine 27 of histone H3, and trimethyl H3K27 is a molecular marker of transcriptionally repressed facultative heterochromatin. In mouse embryonic stem cells and multiple plant species, H2A.Z has been found to be colocalized with H3K27 methylation. H2A.Z is required for normal H3K27 methylation in these experimental systems, though the regulatory mechanisms are not well understood. We report here that Neurospora crassa mutants lacking H2A.Z or SWR-1, the ATP-dependent histone variant exchanger, exhibit a striking reduction in levels of H3K27 methylation. RNA-sequencing revealed downregulation of eed, encoding a subunit of PRC2, in an hH2Az mutant compared to wild type, and overexpression of EED in a hH2Az;eed background restored most H3K27 methylation. Reduced eed expression leads to region-specific losses of H3K27 methylation, suggesting that differential dependence on EED concentration is critical for normal H3K27 methylation at certain regions in the genome.

Promoter proximal pausing (PPP) of RNA polymerase II has emerged as a crucial rate-limiting step in the regulation of gene expression. Regulation of PPP is brought about by complexes 7SK snRNP, P-TEFb (Cdk9/cycT), and the negative elongation factor (NELF), which are highly conserved from Drosophila to humans. Here, we show that RNAi-mediated depletion of bin3 or Hexim of the 7SK snRNP complex or depletion of individual components of the NELF complex enhances Yki-driven growth, leading to neoplastic transformation of Drosophila wing imaginal discs. We also show that increased CDK9 expression cooperates with Yki in driving neoplastic growth. Interestingly, overexpression of CDK9 on its own or in the background of depletion of one of the components of 7SK snRNP or the NELF complex necessarily, and specifically, needed Yki overexpression to cause tumorous growth. Genome-wide gene expression analyses suggested that deregulation of protein homeostasis is associated with tumorous growth of wing imaginal discs. As both Fat/Hippo/Yki pathway and PPP are highly conserved, our observations may provide insights into mechanisms of oncogenic function of YAP—the ortholog of Yki in humans.

Transcriptomes may evolve by multiple mechanisms, including the evolution of novel genes, the evolution of transcript abundance, and the evolution of cell, tissue, or organ expression patterns. Here, we focus on the last of these mechanisms in an investigation of tissue and organ shifts in gene expression in Drosophila melanogaster. In contrast to most investigations of expression evolution, we seek to provide a framework for understanding the mechanisms of novel expression patterns on a short population genetic timescale. To do so, we generated population samples of D. melanogaster transcriptomes from five tissues: accessory gland, testis, larval salivary gland, female head, and first-instar larva. We combined these data with comparable data from two outgroups to characterize gains and losses of expression, both polymorphic and fixed, in D. melanogaster. We observed a large number of gain- or loss-of-expression phenotypes, most of which were polymorphic within D. melanogaster. Several polymorphic, novel expression phenotypes were strongly influenced by segregating cis-acting variants. In support of previous literature on the evolution of novelties functioning in male reproduction, we observed many more novel expression phenotypes in the testis and accessory gland than in other tissues. Additionally, genes showing novel expression phenotypes tend to exhibit greater tissue-specific expression. Finally, in addition to qualitatively novel expression phenotypes, we identified genes exhibiting major quantitative expression divergence in the D. melanogaster lineage.

MAPK pathways are drivers of morphogenesis and stress responses in eukaryotes. A major function of MAPK pathways is the transcriptional induction of target genes, which produce proteins that collectively generate a cellular response. One approach to comprehensively understand how MAPK pathways regulate cellular responses is to characterize the individual functions of their transcriptional targets. Here, by examining uncharacterized targets of the MAPK pathway that positively regulates filamentous growth in Saccharomyces cerevisiae (fMAPK pathway), we identified a new role for the pathway in negatively regulating invasive growth. Specifically, four targets were identified that had an inhibitory role in invasive growth: RPI1, RGD2, TIP1, and NFG1/YLR042c. NFG1 was a highly induced unknown open reading frame that negatively regulated the filamentous growth MAPK pathway. We also identified SFG1, which encodes a transcription factor, as a target of the fMAPK pathway. Sfg1p promoted cell adhesion independently from the fMAPK pathway target and major cell adhesion flocculin Flo11p, by repressing genes encoding presumptive cell-wall-degrading enzymes. Sfg1p also contributed to FLO11 expression. Sfg1p and Flo11p regulated different aspects of cell adhesion, and their roles varied based on the environment. Sfg1p also induced an elongated cell morphology, presumably through a cell-cycle delay. Thus, the fMAPK pathway coordinates positive and negative regulatory proteins to fine-tune filamentous growth resulting in a nuanced response. Functional analysis of other pathways’ targets may lead to a more comprehensive understanding of how signaling cascades generate biological responses.

Drosophila Lobe (L) alleles were first discovered ~100 years ago as spontaneous dominant mutants with characteristic developmental eye defects. However, the molecular basis for L dominant eye phenotypes has not been clearly understood. A previous work reported identification of CG10109/PRAS40 as the L gene, but subsequent analyses suggested that PRAS40 may not be related to L. Here, we revisited the L gene to clarify this discrepancy and understand the basis for the dominance of L mutations. Genetic analysis localized the L gene to Oaz, which encodes a homolog of the vertebrate zinc finger protein 423 (Zfp423) family transcriptional regulators. We demonstrate that RNAi knockdown of Oaz almost completely restores all L dominant alleles tested. Lrev6-3, a revertant allele of the L2 dominant eye phenotype, has an inframe deletion in the Oaz coding sequence. Molecular analysis of L dominant mutants identified allele-specific insertions of natural transposons (roo[ ]L1, hopper[ ]L5, and roo[ ]Lr) or alterations of a preexisting transposon (L2-specific mutations in roo[ ]Mohr) in the Oaz region. In addition, we generated additional L2-reversion alleles by CRISPR targeting at Oaz. These new loss-of-function Oaz mutations suppress the dominant L eye phenotype. Oaz protein is not expressed in wild-type eye disc but is expressed ectopically in L2/+ mutant eye disc. We induced male recombination between Oaz-GAL4 insertions and the L2 mutation through homologous recombination. By using the L2-recombined GAL4 reporters, we show that Oaz-GAL4 is expressed ectopically in L2 eye imaginal disc. Taken together, our data suggest that neomorphic L eye phenotypes are likely due to misregulation of Oaz by spontaneous transposon insertions.

As juvenile animals grow, their behavior, physiology, and development need to be matched to environmental conditions to ensure they survive to adulthood. However, we know little about how behavior and physiology are integrated with development to achieve this outcome. Neuropeptides are prime candidates for achieving this due to their well-known signaling functions in controlling many aspects of behavior, physiology, and development in response to environmental cues. In the growing Drosophila larva, while several neuropeptides have been shown to regulate feeding behavior, and a handful to regulate growth, it is unclear if any of these play a global role in coordinating feeding behavior with developmental programs. Here, we demonstrate that Neuropeptide F Receptor (NPFR), best studied as a conserved regulator of feeding behavior from insects to mammals, also regulates development in Drosophila. Knocking down NPFR in the prothoracic gland, which produces the steroid hormone ecdysone, generates developmental delay and an extended feeding period, resulting in increased body size. We show that these effects are due to decreased ecdysone production, as these animals have reduced expression of ecdysone biosynthesis genes and lower ecdysone titers. Moreover, these phenotypes can be rescued by feeding larvae food supplemented with ecdysone. Further, we show that NPFR negatively regulates the insulin signaling pathway in the prothoracic gland to achieve these effects. Taken together, our data demonstrate that NPFR signaling plays a key role in regulating animal development, and may, thus, play a global role in integrating feeding behavior and development in Drosophila.

Chemosensation plays a role in the behaviors and life cycles of numerous organisms, including nematodes. Many guilds of nematodes exist, ranging from the free-living Caenorhabditis elegans to various parasitic species such as entomopathogenic nematodes (EPNs), which are parasites of insects. Despite ecological differences, previous research has shown that both EPNs and C. elegans respond to prenol (3-methyl-2-buten-1-ol), an odor associated with EPN infections. However, it is unclear how C. elegans responds to prenol. By utilizing natural variation and genetic neuron ablation to investigate the response of C. elegans to prenol, we found that the AWC neurons are involved in the detection of prenol and that several genes (including dcap-1, dcap-2, and clec-39) influence response to this odorant. Furthermore, we identified that the response to prenol is mediated by the canonically proposed pathway required for other AWC-sensed attractants. However, upon testing genetically diverse isolates, we found that the response of some strains to prenol differed from their response to isoamyl alcohol, suggesting that the pathways mediating response to these two odorants may be genetically distinct. Further, evaluations leveraging natural variation and genome wide association revealed specific genes that influence nematode behavior and provide a foundation for future studies to better understand the role of prenol in nematode behavioral ecology.

Bone morphogenetic proteins (BMPs) shape normal development and function via canonical and noncanonical signaling pathways. BMPs initiate canonical signaling by binding to transmembrane receptors that phosphorylate Smad proteins and induce their translocation into the nucleus and regulation of target genes. Phosphorylated Smads also accumulate at cellular junctions, but this noncanonical, local BMP signaling modality remains less defined. We have recently reported that phosphorylated Smad (pMad in Drosophila) accumulates at synaptic junctions in protein complexes with genetically distinct composition and regulation. Here, we examined a wide collection of Drosophila Mad alleles and searched for molecular features relevant to pMad accumulation at synaptic junctions. We found that strong Mad alleles generally disrupt both synaptic and nuclear pMad, whereas moderate Mad alleles have a wider range of phenotypes and can selectively impact different BMP signaling pathways. Interestingly, regulatory Mad mutations reveal that synaptic pMad appears to be more sensitive to a net reduction in Mad levels than nuclear pMad. Importantly, a previously uncharacterized allele, Mad8, showed markedly reduced synaptic pMad but only moderately diminished nuclear pMad. The postsynaptic composition and electrophysiological properties of Mad8 neuromuscular junctions (NMJs) were also altered. Using biochemical approaches, we examined how a single point mutation in Mad8 could influence the Mad-receptor interface and identified a key motif, the H2 helix. Our study highlights the biological relevance of Smad-dependent, synaptic BMP signaling and uncovers a highly conserved structural feature of Smads, critical for normal development and function.

Myosin is an essential motor protein, which in muscle is comprised of two molecules each of myosin heavy-chain (MHC), the essential or alkali myosin light-chain 1 (MLC1), and the regulatory myosin light-chain 2 (MLC2). It has been shown previously that MLC2 phosphorylation at two canonical serine residues is essential for proper flight muscle function in Drosophila; however, MLC2 is also phosphorylated at additional residues for which the mechanism and functional significance is not known. We found that a hypomorphic allele of Pkc causes a flightless phenotype; therefore, we hypothesized that PKC phosphorylates MLC2. We rescued flight disability by duplication of the wild-type Pkc gene. Moreover, MLC2 is hypophosphorylated in Pkc mutant flies, but it is phosphorylated in rescued animals. Myosin isolated from Pkc mutant flies shows a reduced actin-activated ATPase activity, and MLC2 in these myosin preparations can be phosphorylated directly by recombinant human PKC. The flightless phenotype is characterized by a shortened and disorganized sarcomere phenotype that becomes apparent following eclosion. We conclude that MLC2 is a direct target of phosphorylation by PKC, and that this modification is necessary for flight muscle maturation and function.

Mutant evolution in spatially structured systems is important for a range of biological systems, but aspects of it still require further elucidation. Adding to previous work, we provide a simple derivation of growth laws that characterize the number of mutants of different relative fitness in expanding populations in spatial models of different dimensionalities. These laws are universal and independent of "microscopic" modeling details. We further study the accumulation of mutants and find that, with advantageous and neutral mutants, more of them are present in spatially structured, compared to well-mixed colonies of the same size. The behavior of disadvantageous mutants is subtle: if they are disadvantageous through a reduction in division rates, the result is the same, and it is the opposite if the disadvantage is due to a death rate increase. Finally, we show that in all cases, the same results are observed in fragmented, nonspatial patch models. This suggests that the patterns observed are the consequence of population fragmentation, and not spatial restrictions per se. We provide an intuitive explanation for the complex dependence of disadvantageous mutant evolution on spatial restriction, which relies on desynchronized dynamics in different locations/patches, and plays out differently depending on whether the disadvantage is due to a lower division rate or a higher death rate. Implications for specific biological systems, such as the evolution of drug-resistant cell mutants in cancer or bacterial biofilms, are discussed.

Sex-Ratio (SR) chromosomes are selfish X-chromosomes that distort Mendelian segregation and are commonly associated with inversions. These chromosomal rearrangements suppress recombination with Standard (ST) X-chromosomes and are hypothesized to maintain multiple alleles important for distortion in a single large haplotype. Here, we conduct a multifaceted study of the multiply inverted Drosophila pseudoobscura SR chromosome to understand the evolutionary history, genetic architecture, and present-day dynamics that shape this enigmatic selfish chromosome. The D. pseudoobscura SR chromosome has three nonoverlapping inversions of the right arm of the metacentric X-chromosome: basal, medial, and terminal. We find that 23 of 29 Mb of the D. pseudoobscura X-chromosome right arm is highly differentiated between the Standard and SR arrangements, including a 6.6 Mb collinear region between the medial and terminal inversions. Although crossing-over is heavily suppressed on this chromosome arm, we discover it is not completely eliminated, with measured rates indicating recombination suppression alone cannot explain patterns of differentiation or the near-perfect association of the three SR chromosome inversions in nature. We then demonstrate the ancient basal and medial inversions of the SR chromosome contain genes sufficient to cause weak distortion. In contrast, the younger terminal inversion cannot distort by itself, but contains at least one modifier gene necessary for full manifestation of strong sex chromosome distortion. By parameterizing population genetic models for chromosome-wide linkage disequilibrium with our experimental results, we infer that strong selection acts to maintain the near-perfect association of SR chromosome inversions in present-day populations. Based on comparative genomic analyses, direct recombination experiments, segregation distortion assays, and population genetic modeling, we conclude the combined action of suppressed recombination and strong, ongoing, epistatic selection shape the D. pseudoobscura SR arrangement into a highly differentiated chromosome.

Natural environments are seldom static and therefore it is important to ask how a population adapts in a changing environment. We consider a finite, diploid population evolving in a periodically changing environment and study how the fixation probability of a rare mutant depends on its dominance coefficient and the rate of environmental change. We find that, in slowly changing environments, the effect of dominance is the same as in the static environment, that is, if a mutant is beneficial (deleterious) when it appears, it is more (less) likely to fix if it is dominant. But, in fast changing environments, the effect of dominance can be different from that in the static environment and is determined by the mutant’s fitness at the time of appearance as well as that in the time-averaged environment. We find that, in a rapidly varying environment that is neutral on average, an initially beneficial (deleterious) mutant that arises while selection is decreasing (increasing) has a fixation probability lower (higher) than that for a neutral mutant as a result of which the recessive (dominant) mutant is favored. If the environment is beneficial (deleterious) on average but the mutant is deleterious (beneficial) when it appears in the population, the dominant (recessive) mutant is favored in a fast changing environment. We also find that, when recurrent mutations occur, dominance does not have a strong influence on evolutionary dynamics.

Genetic approaches in model organisms have consistently demonstrated that molecular traits such as gene expression are under genetic regulation, similar to clinical traits. The resulting expression quantitative trait loci (eQTL) have revolutionized our understanding of genetic regulation and identified numerous candidate genes for clinically relevant traits. More recently, these analyses have been extended to other molecular traits such as protein abundance, metabolite levels, and miRNA expression. Here, we performed global hepatic eQTL and microRNA expression quantitative trait loci (mirQTL) analysis in a population of Diversity Outbred mice fed two different diets. We identified several key features of eQTL and mirQTL, namely differences in the mode of genetic regulation (cis or trans) between mRNA and miRNA. Approximately 50% of mirQTL are regulated by a trans-acting factor, compared to ~25% of eQTL. We note differences in the heritability of mRNA and miRNA expression and variance explained by each eQTL or mirQTL. In general, cis-acting variants affecting mRNA or miRNA expression explain more phenotypic variance than trans-acting variants. Lastly, we investigated the effect of diet on the genetic architecture of eQTL and mirQTL, highlighting the critical effects of environment on both eQTL and mirQTL. Overall, these data underscore the complex genetic regulation of two well-characterized RNA classes (mRNA and miRNA) that have critical roles in the regulation of clinical traits and disease susceptibility.



Genetic Markers

You know how an interstate map can guide you from one city to another. A genetic map is like that, and it guides researchers toward their target gene. Just as there are landmarks in interstate maps, there also are landmarks in genetic maps known as genetic markers...
Read More



A hereditary unit that occupies a certain position on a chromosome; a unit that has one or more specific effects on the phenotype, and can mutate to various allelic forms.